
“Convolutional Neural Networks For Galaxy

Morphology Classification”

Machine Learning (course 1DT071)

Uppsala University – Spring 2018

Diego Castillo Ankur Shukla Tristan Wright

October 24, 2018

Abstract

In 2014, Kaggle organized the Galaxy Zoo challenge to analyze images of galaxies from the Sloan
Digital Sky Survey in order to automate the tagging of morphological attributes. For a machine
to automatically learn the features directly from data, a deep convolutional neural network was
implemented based on an existing architecture that placed highly in a competitive image classification
competition a number of years prior. The dataset consisted of 79 975 test images and 61 578 training
images which were cropped and downsampled for dimensionality reduction and memory efficiency.
The model was trained with a variety of batch sizes and input formats. These input formats included
further dimensionality reductions, data augmentation, and color space conversions. One of the
methods ultimately attained a Top 100 score on the Kaggle leaderboards. Further advances can be
done to improve the performance of the model by tuning other hyperparameters such as learning
rate and number of epochs.

1 Introduction

A galaxy is a system of stars, dust, and matter grouped together by some center of mass. By studying
galaxies, astronomers search for answers to questions like “are all galaxies the same size?” and “how
and when did galaxies form?” Through the search for these questions scientists learn about the history
of the universe and about the origins of our own galaxy.

As a consequence of this search for questions regarding heavenly bodies, astronomy is a research field
ripe with large datasets [12]. Simultaneous to the enormous datasets, machine learning methods are
rapidly becoming a go-to tool for automating data-intensive processes which normally require days or
weeks of –often tedious– human processing. Due to the incomprehensible size of the Universe, classifying
celestial bodies is an excellent candidate for the application of machine learning.

The Sloan Digital Sky Survey (SDSS) has made machine learning methods more viable by releasing
large datasets to the public. Since SDSS’ inception in 1998 and the first data release in 2000, the group
has released over 14 datasets for public use. These datasets have been used for numerous applications
of machine learning in the classification of astronomical bodies. For example, Ross Fadely in 2012 used
support vector machines to classify galaxies and stars. However, they found in the end that they only
preformed marginally better than template matching, a traditional image analysis method [18]. Decision
trees have also been employed on the star-galaxy classification problem [1]. Thanks to more available
computing resources in this century, artificial neural networks have been trained to classify galaxies and
even detect black holes by analyzing images taken on the X-ray spectrum [10]. Convolutional neural
networks (CNN’s) have been a popular choice for classifying astronomical images due to their ability to
extract features from images which humans might not otherwise select [8].

This paper demonstrates how a CNN can be constructed to analyze images of galaxies to automatically
detect metrics that reproduce the probability distributions derived from expert and crowd-sourced human
classifications.

The dataset comes from the Dark Energy Camera Legacy Survey (DECaLS), a subset of an SDSS
dataset for specifically galaxies called “Galaxy Zoo”. DECaLS uses a larger telescope, so it is 10 times

1



more sensitive to light than the survey that supplied images to the first iteration of Galaxy Zoo. This
means there is more detail [23]. In 2014 this same dataset was used as the premise for a Kaggle compe-
tition.

2 The Dataset

The “Galaxy Zoo” dataset consists of a total 141 553 images. These are split into 61 578 images for
training –each with their respective probability distributions for the classifications for each of the inputs–
and 79 975 images for testing.

As a crowd-sourced volunteer effort, images of the dataset were classified across 11 different categories.
Each of categories have attributes which volunteers can rank, there are 37 attributes in total. Some
categories are dependent on the presence of others, for example number of spiral arms and spiral tightness
is dependent on if the galaxy has spiral shape. The votes on these volunteer categorizations are normalized
to a floating point number between 0 and 1 inclusive. A number close to 1 indicates many users identified
this category for the galaxy image with a high level of confidence, while numbers close to 0 indicate
otherwise. These numbers represent the overall morphology of a galaxy in 37 attributes.

Figure 2 shows how each galaxy’s classification is the result of a specific path down the decision tree.
The root of the tree consists of more general questions, and as the tree grows, the questions become more
specific. The appearance of subsequent questions is dependent upon previous responses. Classifications
performed by multiple users for the same galaxy result in multiple paths along the tree which generate
probabilities for each question. The classification probability for each node sums up to 1.

Due to these probabilities being tied to each image this is a regression problem rather than a classifi-
cation problem. Therefore, the task is to determine the degree to which a galaxy has certain attributes
and mimic how people would classify the same galaxy.

3 Theory

3.1 Neural Network

A standard neural network (NN) consists of many simple, connected processors called neurons. Each
neuron produces a sequence of real-valued activations. A neuron can be activated from an input or
another neuron’s activation through its weighted connections from a previous layer [19].

Figure 3.1 shows how a NN receives a number of inputs which are connected to an activation function
through weighted edges. A NN can have any number of inputs, hidden layers, or outputs.

An activation function computes a weighted sum of its input, adds a bias and decides whether the
neuron’s value should be propagated or not. A common choice for an activation function is the Rectified
Linear Unit (ReLU) [16]. A ReLU is defined as: σ(x) = max(0, x), where x is the weighted sum of the
inputs. It returns an output x if σ(x) is positive, 0 otherwise. NN’s using primarily ReLU activation
functions have been shown to enable faster training even with many layers [8].

It is possible for ReLU to introduce dead neurons whose output is always zero, this problem is known
as the dying ReLU problem. To mitigate this issue, a slightly different version of ReLU known as leaky
ReLU can be used. Leaky ReLU is defined in equation 3.1.

σ(x) =

{
x, if x ≥ 0

0.01x, otherwise
(3.1)

A loss function defines the difference between the target and actual output [9]. A NN uses the
loss function to correct weights after a feed forward operation, this process of correction is called back
propagation. The error is propagated backwards from the output layer through the hidden layers to the
input layer, wherein the weights and biases are modified in such a way that the error for the most recent
input is minimized. Over many training samples the loss function will minimize error and the value of
the weights for the whole network will begin to converge. The curve which the error rate of the network
experiences is controlled through a gradient descent method. This method can help determine whether
the network should be trained further or to stop early.

2



Figure 2.1: Flowchart of the classification tasks for the “Galaxy Zoo” dataset. Tasks are color-coded
by their relative depths in the decision tree. Tasks outlined in brown are asked for every galaxy. Tasks
outlined in green, blue, and purple are one, two or three steps respectively below branching points in the
decision tree [22].

3.2 Deep Learning

Deep learning is a set of algorithms in machine learning that attempt to learn in multiple levels, cor-
responding to different levels of abstraction. It is based on learning several levels of representations,
corresponding to a hierarchy of features, where higher-level concepts are defined from lower-level ones,
and the same lower level concepts can help to define many higher-level concepts. It typically uses artifi-
cial neural networks. An observation (e.g., an image) can be represented in many ways (e.g., a vector of
pixels), but some representations make it easier to learn tasks of interest through examples (e.g., is this
the image of a human face?). Research in this area attempts to define what makes better representations
and the best methods for a NN to approach learning them [6].

3.3 CNNs

A CNN is a type of deep feed-forward neural network [8] which is able to extract elementary visual
features from its input. The creation of CNNs was motivated by Hubel and Wiesel’s discovery in [4],
where they were able to find that a cat’s visual cortex has locally sensitive, orientation-selective neurons.
CNNs were first introduced in 1999 [15], and since then have been applied to solve numerous different
type of problems in natural language processing [3], image recognition [8], and recommendation systems
[21].

A CNN takes an image as an input and feeds it through several layers; usually convolutional layers
with ReLU activation functions, pooling layers, and a fully-connected layer (FCL). Convolutions are the

3



z1

z2

zI

f(net− θ) o

v1

v2

vI

Figure 3.1: A NN which receives the inputs z1, z2, ..., zI and connects them to the neuron through the
weighted edges v1, v2, .., vI . The input values are multiplied by their respective weights and subtracted
from a threshold (θ). The result is passed to an activation function which produces the output [9].

-8 -6 -4 -2 0 2 4 6 8

2

4

6

8

Figure 3.2: A ReLU function [5].

primary operation of a CNN and what makes them distinct from other type of networks. A convolutional
layer parameters is made up of a set of small learnable weights known as filters. A filter has a local
receptive field, and given an image as an input to a convolutional layer, it convolves each filter across
the image’s width and height using a specified stride size and produces outputs called feature maps [8].
Filters are what allow a CNN to learn to extract visual clues from its input such as edges, lines, and
corners [15]. Equation 3.2 from [8] gives the mathematical definition of a feature map k. The summation
is performed over the set of input feature maps, the symbol ∗ describes the convolution operator, and
xm the filters.

yk = σ

(∑
m

wk
m ∗ xm + bk

)
(3.2)

The filters of a CNN compute linear element-wise multiplication and additions to create the feature
maps. In order to add non-linearity, it is common for the convolutional layers to use ReLUs as the
activation function which additionally allow for faster training in networks with many layers [8].

Feature maps are then fed through pooling layers. A pooling layer is typically of size 2 × 2 [14], and
its job is to essentially reduce the resolution of the previous feature map. A pooling layer performs an
operation such as selecting the maximum value within its range, thus acting as a regularization technique
to avoid overfitting.

Finally, convolutional and pooling layers are followed up by a FCL. The FCL size needs to be the
same as the number of classes or outputs the network has to learn to identify [2], and its goal is to simply
act as a classification layer which outputs the probability for each class.

Once the architecture of a CNN has been specified, its filters and weights are initialized to small
random values. Next, given an image as an input, it is fed through the convolutional, pooling operations,
and the FCL. The output probabilities of the network are then used to compute the total error, and
finally gradient descent is used to update the filter and weight values with respect to their contribution
to the total error. This process is repeated with other images in the dataset until satisfactory results are
achieved.

4



4 Implementation

4.1 Data Preprocessing

All images in the dataset are of size 424 × 424 and the object of interest is always centered. In order
to reduce the dimensionality of the images, during preprocessing images are cropped to 212 × 212, half
their original size, images are also down sampled to half size again 106 × 106, discarding unnecessary
information in each image which could impair the network. Down sampling can help the CNN learn
which regions are related to each specific expression as well as improve performance when training [11].
Reducing the size of each image has the secondary quality of being more memory efficient which is
beneficial for training and network size.

4.1.1 Data Augmentation

While there is a sufficient count of images to train on, it is possible to increase the performance of the
network by augmenting the training data, increasing the apparent size of the dataset to the CNN, thereby
reducing the chances of overfitting. Because the galaxies are rotationally invariant this dataset is an ideal
candidate for applying data augmentation to. Therefore, a random transformation was performed online
to different images across epochs. This transformation could be any combination of rotation by 90 degree
increments or a flip on the horizontal or vertical axes, or no transformation at all (one in four chance
that there is no rotation at all). This brings 16 possible configurations for each image. Trained over 50
epochs there is a good likelihood that the network will see every configuration of any given image.

4.2 CNN Architecture - VGG-16

VGG-16 is a 16 weight-layer CNN used for image recognition. Created by the visual geometry group at
Oxford in 2014 VGG-16 got second place to Google’s GoogLeNet in the Large Scale Visual Recognition
Challenge (ILSVRC) 2014 [13]. With the trained model released to the public, it is possible to build on
top of the weights that are already set by the initial training phase. The advantage behind this is that
the model doesn’t need to be trained from scratch, this is a form of transfer learning.

Other pre-trained CNN architectures exist such as GoogLeNet and AlexNet. GoogLeNet uses average
pooling instead of FCL’s [20] and beat VGG with an error rate of 6.67% over VGG’s 6.8%. AlexNet won
ILSVRC in 2012 and was novel for stacking multiple convolutional (conv) layers in a row before pooling
their results [14].

Input 224 × 224
Conv3-64
Conv3-64
maxpool

Conv3-128
Conv3-128
maxpool

Conv3-256
Conv3-256
Conv3-256
maxpool

Conv3-512
Conv3-512
Conv3-512
maxpool

Conv3-512
Conv3-512
Conv3-512
maxpool
FC 4096
FC 4096
FC 1000

soft-max output

Table 1: VGG-16 archi-
tecture [13].

Table 1 lays out the full VGG-16 architecture. VGG also made 11, 13,
and 19 weight-layer variants which use different counts and sizes of conv
layers. For the variant implemented here, all conv layers are of size 3 × 3
and have a stride of one. The second number after “conv3” in table 1
represents the number of image channels, which increase as the architecture
gets deeper and the image input more filtered.

VGG is a good choice over GoogLeNet and AlexNet because the weights
from the competition are available to the public for use and AlexNet and
GoogLeNet are not as readily available. Furthermore, VGG’s fully connected
nature without any special layers and widgets like AlexNet or GoogLeNet
make implementation and management much more simple.

While VGG-16 was trained on 1000 categories of images (classes), the
Galaxy Zoo dataset has an expected output dimensionality of 37. Therefore,
several changes had to be made to the network architecture to support the
new input and output sizes. The last layer is set to 37 neurons. On the input
layer of VGG-16, because the data preprocessing methods crop and down-
sample from 424× 424 pixels to 106× 106 pixels the input layer needs to be
one of size 3×106×106 (three because the images have three color channels:
red, green, blue). Another change made for this problem was changing the
output layer activation function from soft-max to sigmoid. With this new
network architecture the pre-trained weights from the ILSVRC competition
released to the public by VGG were unusable, this meant training from

5



scratch was necessary. Fortunately the hardware to do such training was
available (see 4.5).

4.3 Dropout

Dropout is a method to prevent NN’s from overfitting [17]. It does this by
randomly deactivating some neurons in one –or many– layers. This makes
the remaining active neurons compensate their weights twice as much in the
back-propagation phase. Neurons are randomly activated and deactivated
per update; here, each time a batch has been fully fed through the network. By activating and deacti-
vating neurons in layers, dropout keeps the neurons of a network robust to the training data by never
letting them fully fit to the training data. In [17] the authors recommend to keep dropout ratio between
0.5 and 1. In the implementation of VGG-16 the 50% dropout rate –which the original implementors
chose– was unchanged. In this VGG-16 implementation dropout only applies to the final two FCL layers.
This means that during any given batch only 2048 neurons are actually active in each layer during any
given training step.

4.4 Hyperparameters

A learning rate of 10−6 was a adopted, this is much lower than the original VGG-16 learning rate, which
was trained with a learning rate of 10−2 and was decreased by a factor of 10 when the validation accuracy
stopped improving [13]. This decrease was because the dataset was much smaller, the ImageNet training
dataset is 1.3 million images, a higher learning rate would be advantageous with that much data because
you would want to take very large improvements in the beginning. Momentum of 0.9 was used. There
was no learning rate decay. Early validation splits were very high, at 90% training and 10% validation
(90/10) this split was producing models which were overfit as evidenced by poor performance as well as
the training loss on the model becoming –sometimes significantly– less than the validation loss. Later,
this was changed to a more traditional validation split of 80/20. The test set was provided entirely
separately by Kaggle and is discussed in section 5.1. In each back propagation call after a step, the
minimizing function was a mean square error of the expected versus actual output.

Dimensions of the images can be reduced dramatically and still be useful to the network. Two image
sizes were tried, 106 × 106 and 69 × 69. The 106 × 106 image size is the center of the image cropped to
212× 212 and downsampled. The 69× 69 size was prompted from the winning submission to the Kaggle
competition, the author crops at 207 and then downsamples 3x to 69× 69 [7]. Different batch sizes were
tried too: 16, 32. These batch sizes determine how fast the weights of the network get updated. The
smaller the batches get to one the closer the network gets to using simple gradient descent methods.
Because the dataset and the number of parameters in the network are both large, adjusting weights with
an extreme frequency could lead to getting stuck in minima or over-adjusting and missing the target
function.

Another change from the presented VGG-16 implementation was the output layer activation function.
Sigmoid activation function was chosen over soft-max, this was an important change because the soft-
max function has difficulty predicting hard zeros and ones [7]. Throughout the dataset there are many
hard zero values which represent the galaxy not having that attribute at all.

4.5 Software and Hardware

For the software implementations there are two readily available and widely used machine learning
frameworks Keras and TensorFlow. Keras is a high-level machine learning library written in Python.
It can be used with a range of backend drivers which makes it very portable. TensorFlow is a backend
driver used with Keras which allows access to low level hardware for training.

A NVidia GeForce 970 graphics processing unit (GPU) was available, it was used for training each of
the models described in results section. GPU’s allow for embarrassingly parallel computations and NN’s
can be placed in that domain of being embarrassingly parallel. Using a GPU decreased training time by
an order of magnitude over traditional CPU’s.

6



69 × 69 106 × 106
Batches of 16 0.11538 (95) 0.11062 (78)
Batches of 32 0.11476 (94) 0.11288 (88)

Table 2: Spread of results for various input and batch sizes. In parentheses after each score denote the
place it would have earned in the Kaggle competition.

5 Results

Each model was trained for at most fifty epochs on the full training dataset. Early runs were trained
with a 90/10 training-validation split, there didn’t seem to be much room for improvement based on the
separation between the validation and training loss. Thus, an 80/20 split was settled on, results were
much better. Early stopping would be invoked if validation loss did not improve for five epochs. To
make sure the results could be equally quantified the dataset was shuffled with the same random seed
each time.

5.1 Benchmarks

The Galaxy Zoo Kaggle competition has a test image set of 79 975 images. After training the model the
network uses these images to produce predictions. These predictions are saved as a CSV file and uploaded
to Kaggle. Kaggle then scores the predictions using the root mean square error (RMSE) between the
model predictions and what the actual values are (these actual values for the test set are kept secret),
the lower scores are better. There are certain basic thresholds which can be used to determine if the
model behaves as a random classifier or worse. The first is an All Zeros benchmark, this is equivalent
to a network that always outputs zeros for all attributes. Similarly, there is an All Ones benchmark;
these two benchmarks represent random classifications which, while not entirely trivial to pass, require
some rational architectural choices. The final benchmark is harder, a Central Pixel benchmark, which
are the predictions if the outputs were simply the central pixel RGB value in each training image. Very
early implementations of the VGG-16 model could pass the All Zero benchmark, later–with the right
hyper-parameters– the model could pass the All Ones and Central Pixel benchmarks. Results through
the rest of this paper are based on the RMSE score Kaggle given for a particular model.

5.2 Performance

Before immediately attempting data-augmentation methods, a few hyperparameter configurations were
run to get a better idea of the best input size and the best batch size for moving forward (figure 2).

Results where image size was 69 × 69 and where the batch size was 32 or 16 the loss graph and
validation loss exhibited traits of overfitting (figure 5.1). The results from Kaggle may, in fact, back this
up, as the score gets better the larger the batch size. Although, two points do not necessarily make a
trend, it could also be that larger batch sizes may be necessary when the images (input sizes) are smaller.

7



Figure 5.1: The training loss line being lower than the validation loss line is characteristic of overfitting.
Stopped before 50 epochs.

Figure 5.2: A run with a 90/10 training-validation split, the score from this run was admissible but
ultimately beat by 80/20 splits. The Kaggle score from this run was 0.13070.

8



Figure 5.3: A run with 80/20 training-validation split. Notice the smoother curve versus a run with the
same parameters but a 90/10 split.

Results for the larger images are more in line with expectations. Interestingly, the smaller batches
of 16 worked better than 32. This may be surprising compared to the original VGG-16 implementation
where input sizes were 224 × 224 and their batch was 256. The low learning rate is potentially the
parameter solving this. Again, the ImageNet dataset is a little more than an order of magnitude larger
than the Galaxy Zoo one, in this aspect the chosen architecture may be overkill and a smaller VGG
variant should have been tried out first.

The best run was a simple improvement from an early run where the data was split 90/10 (figure
5.2). This was a rather high split, while it could be trained further the jitter of the validation loss line
is cause for concern. It was eventually settled on using the same split which VGG did: 80/20. The
results of this run produce an error curve smoother than the one a 90/20 split produced and one which,
if desired, could continue to be trained (figure 5.3).

5.3 HSV Input format

In digital imagery pixels are stored as combinations of three values red, green, and blue (RGB). However,
there are many more ways to represent color; in printing for example: cyan, magenta, yellow, black
(CMYK) are optimal values because of how light reflects on printed surfaces. Hue, saturation, value
(HSV) is a different color space where the color is stored in hue, color intensity is stored in saturation,
and the brightness is stored in a value. There were hypothesis if converting the galaxy images to this
color format might enhance responses in the network, stars being bright, the star pixels will emit a high
V value and thus create stronger weights.

The results from this color space conversion were not terrific. With a batch of 32 with images the
image size of 106 × 106 got a score of 0.13778 worse than any RGB result. The score was worse due to
two issues over which there was much rumination. While V may have been regularly high for the features
the model is trying to detect, H may have been too varied for the network to converge on. For S, the
color intensity of images was not very high, and so most colors were close to zero on the saturation scale.
The combination of a rapidly fluctuating variable H, a regularly small value of S made V comparatively
worthless to the network. This score would have earned 178th in the Kaggle competition.

5.4 Data Augmentation

After examining the results on 16 and 32 batches it was decided to move forward with applying data
augmentation to image sizes of 106 × 106. Augmenting with the transformations discussed in section
4.1.1 increases the size of the training dataset by a great amount. In an 80/20 split there will be 49 262

9



106 × 106
Batches of 16 0.11331
Batches of 32 0.11673

Table 3: Spread of results for various batch sizes with data augmentation. Augmentation was a random
combination of reflection on the horizontal or vertical axis and being rotated by 90 degree increments.

All results, sorted best to worst
image size , batch size Score
106 × 106, 16 0.11062
106 × 106, 32 0.11288
106 × 106, 16, augmented 0.11331
69 × 69, 32 0.11476
69 × 69, 16 0.11538
106 × 106, 32, augmented 0.11673
106 × 106, 32, 90/10 split 0.13070
106 × 106, 32, HSV format 0.13778

Table 4: All results sorted by Kaggle score. Runs are using 80/20 split unless specified otherwise.

training images, when this is augmented there will effectively be 788 198 images. The validation dataset
is not augmented as it is needed as unaltered images are best used for a baseline.

This reinforces a forming hypothesis that smaller batch sizes for the 106 × 106 image sizes are more
optimal. These scores would have earned 91st and 97th respectively. There may be too much augmen-
tation going on and not enough hyperparameter adjustment. There are almost a three quarters of a
million images with these transformations, it might have been best to perform some learning rate stud-
ies; as is, the network might not have taken the large strides it needed to attain better score than the
un-augmented datasets.

6 Discussion

From the get-go, there were a lot of models and solutions for this problem available online to trawl over
and gain knowledge from. In that sense shoulders of giants were stood upon, and what tall giants they
were. To summarize, a sixteen layer CNN was implemented in Keras with Tensorflow and was trained
on a dataset of tens of thousands of images. These images were cropped and down-sampled to reduce
dimensionality and make them a manageable size for the network. From those initial scores a series of
other methods were tried and explored from data-augmentation to color space shifting. In the end the
initial trials were the most successful, a full table of the results is available in table 4.

6.1 Further Work

A top 100 score on Kaggle is an accomplishment but there is plenty of improvement to be done, the
scores are in the bottom quartile after all. Hyperparameter studies beyond batch sizes and training splits
were not performed, it is likely that hyperparameters such as learning rate and learning rate decay could
have helped improve the network past current thresholds. A few props were taken from the winning
Kaggle submission, what else could be garnered from their solution? A smaller network for one, feeding
images of 69× 69 through such a large network might have been the folly of those runs which ultimately
led to overfitting, there were simply too many network parameters and not enough input parameters to
fill them. Follies with data-augmentation may not have been negligible either, while the images were
certainly rotationally invariant, too many translations may have been performed and made the apparent
dataset too large for the network to settle on. Tweaking the learning rate and number of epochs could
have worked well, though in that scenario –with resources limited as they were– there might not have
been time to sufficiently explore that line of experimentation which would have involved running 8-12
hour jobs. Ultimately, many runs with varying methods producing varying results –instead of trying to

10



laser in on a single great score by perpetually improving a single good result– may have given a breadth
but not depth of material to present.

With the network as it is, could there be other astronomical problems to tackle? In the coming
years the James Webb space telescope will soon be launched (or hopefully, it has already been delayed
multiple times this decade). An infrared telescope, it will be able to see objects in the Universe which
conventional visible light telescopes cannot. This could open up whole new bodies previously obscured
by dust and nebulae. Notable here, it will be able to detect the earliest galaxies in the Universe.

6.2 Contributions

Prior work has demonstrated the effectiveness of machine learning techniques applied to astronomical
datasets. This is further demonstrated here with a sufficiently large CNN which uses a very low learning
rate. Present results indicate that data-augmentation may not work well with such a low learning rate and
that other hyperparameters –such as learning-rate decay and batch sizes– may be open to adjustment.
The present research is therefore intended to make contributions towards the study of applications of
machine learning on large, image based, astronomical datasets.

6.3 Acknowledgments

Gustaf Borgström, the teaching assistant assigned to us, for keeping us on schedule and advising on the
structure of this paper.

References

[1] N. M. Ball, R. J. Brunner, A. D. Myers, and D. Tcheng. Robust Machine Learning Applied to
Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using
Decision Trees. Astrophysical Journal, 650:497–509, October 2006. doi: 10.1086/507440.

[2] Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and Jürgen Schmidhuber.
Flexible, high performance convolutional neural networks for image classification, 2011.

[3] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
205-4. doi: 10.1145/1390156.1390177. URL http://doi.acm.org/10.1145/1390156.1390177.

[4] T. N. Wiesel D. H. Hubel. Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex. The Journal of Physiology, 160, 2015. ISSN 0022-3751.

[5] Dansbecker. Rectified linear units (relu) in deep learning. https://www.kaggle.com/dansbecker/
rectified-linear-units-relu-in-deep-learning/code.

[6] Li Deng and Dong Yu. Deep learning: Methods and applications. Foundations and Trends R©
in Signal Processing, 7(3–4):197–387, 2014. ISSN 1932-8346. doi: 10.1561/2000000039. URL
http://dx.doi.org/10.1561/2000000039.

[7] Sander Dieleman. My solution for the galaxy zoo challenge. https://benanne.github.io/2014/

04/05/galaxy-zoo.html.

[8] Robert J Brunner Edward J. Kim. Star-galaxy classification using deep convolutional neural net-
works. Monthly Notices of the Royal Astronomical Society, 464:4463–4475, 02 2017.

[9] Andries P. Engelbrecht. Computational Intelligence: An Introduction. Wiley Publishing, 2nd edition,
2007. ISBN 0470035617.

[10] Stanislav Fort. Towards understanding feedback from supermassive black holes using convolutional
neural networks. Workshop on Deep Learning for Physical Sciences (DLPS 2017), 2017. URL
https://arxiv.org/pdf/1712.00523.pdf.

11



[11] Mehdi Ghayoumi. A quick review of deep learning in facial expression. Journal of Communication
and Computer, 14:34–38, 2017.

[12] Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, October 2009. ISBN 978-0-9825442-0-4.

[13] Andrew Zisserman Karen Simonyan. Very deep convolutional networks for large-scale image recog-
nition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[15] Yann Lecun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Contour and Grouping in Computer Vision. Springer, 1999.

[16] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on International Conference on Machine Learning,
ICML’10, pages 807–814, USA, 2010. Omnipress. ISBN 978-1-60558-907-7. URL http://dl.acm.

org/citation.cfm?id=3104322.3104425.

[17] Alex Krizhevsky Ilya Sutskever Ruslan Salakhutdinov Nitish Srivastava, Geoffrey Hinton. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[18] Beth Willman Ross Fadely, David W. Hogg. Star–galaxy classification in multi-band optical imaging.
The Astrophysical Journal, 760(1):15, November 2012.

[19] Jürgen Schmidhuber. Deep learning in neural networks: An overview. the official journal of the
International Neural Network Society, 61, 2015. ISSN 1879-2782.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.

[21] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based
music recommendation. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 2643–2651. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5004-deep-content-based-music-recommendation.pdf.

[22] Kyle W. Willett, Chris J. Lintott, Steven P. Bamford, Karen L. Masters, Brooke D. Simmons, Kevin
R. V. Casteels, Edward M. Edmondson, Lucy F. Fortson, Sugata Kaviraj, William C. Keel, Thomas
Melvin, Robert C. Nichol, M. Jordan Raddick, Kevin Schawinski, Robert J. Simpson, Ramin A.
Skibba, Arfon M. Smith, and Daniel Thomas. Galaxy zoo 2: detailed morphological classifications
for 304 122 galaxies from the sloan digital sky survey. Monthly Notices of the Royal Astronomical
Society, 435(4):2835–2860, 2013. doi: 10.1093/mnras/stt1458. URL http://dx.doi.org/10.1093/

mnras/stt1458.

[23] Zooniverse. The science behind the site. https://www.zooniverse.org/projects/zookeeper/

galaxy-zoo/about/research.

12


